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SUMMARY

The coordinate transformation procedure and solution technique described
herein have been shown to be well suited for the calculation of the complete
flow field surrounding various two-dimensional and axisymmetric bodies. This
conclusion is supported by the good comparisons obtained between predicted
values and experimental data for pressure coefficient distribution and heat-
transfer distribution on a cylinder and for density distributions and shock
standoff distance on spheres. The solutions for the flow over the Viking aero-
shell and a Jupiter probe were obtained by simply adjusting five transformation
constants without having to perform any adjustment on boundary conditions. The
versatility of the technique in being able to model many different axisymmetric
blunt body shapes and its ability to calculate both the forebody and wake flow
over these shapes represent a significant advance in aerothermodynamic
technology.

An upper 1limit on Reynolds number on the order of 1000 is imposed because
of an inability to resolve a thin boundary layer with a reasonable number of
computational mesh points. A lower limit on Reynolds number on the order of
100 is imposed so that continuum theory is applicable. An upper limit on Mach
number approximately equal to 4.0 is imposed because of a tendency to calculate
negative static enthalpies in the process of capturing the bow shock for large
Mach numbers. These limitations are a consequence of the numerical method used
and not of the coordinate system itself. A more refined numerical method could
ease some of these restrictions.

INTRODUCTION

The calculation of the complete flow field surrounding axisymmetric or
two~dimensional blunt bodies in a supersonic stream has been a goal of fluid
dynamicists which has only recently been made practically attainable through
advances in high-speed computers. Inviscid shock-layer solutions (refs. 1
to U4), viscous shock-layer solutions (ref. 5), and solutions of the full
Navier-Stokes equations (ref. 6) have been obtained for the shock layer ahead
of various blunt configurations. Many of those solutions have been specialized
for various flow regimes which range from high Reynolds number flow (ref. 7) to
low Reynolds number flow of a viscous rarefied gas (ref. 8).

Mathematical descriptions of the flow in the wake of a blunt body are more
difficult to obtain. Boundary-layer approximations which are successfully used
in the shock layer are not applicable to a large portion of the wake where vis-
cous forces are dominant (ref. 9); however, early predictions of the wake flow
used these approximations (refs. 10 to 13). Weiss (ref. 14) improved on this
approximation and reported temperature field calculations which compared more
closely with experimental data than previous work. Allen (ref. 15) solved the
full Navier-Stokes equations in the steady state for the laminar wake behind a



two-dimensional rectangular block. That solution specified a boundary-layer
profile under a uniform stream as an inflow condition.

This "patchwork" approach of solving the complete flow field, that is, the
matching of separate, specialized solutions for the different areas of the flow
field, was noted by Scala and Gordon (ref. 16). As an alternative approach,
they presented a solution to the complete time-dependent Navier-Stokes equa-
tions for the transient supersonic flow around a right circular cylinder.
Kitchens extended that approach to obtain the steady-state solution to the same
problem (ref. 17).

It should be noted here that a patchwork approach for obtaining the com-
plete flow field is a useful technique. In fact, these specialized techniques
almost always lead to a more efficient, faster running numerical solution
because fewer computational points are needed to define the flow field and many
terms can be omitted from the Navier-Stokes equations by using an order of mag-
nitude type approach (as is done in deriving the boundary-layer equations) in
certain areas of the flow field. However, the major disadvantage of the patch-
work approach is that it is often difficult to determine where and how the var-
ious specialized solutions are to be matched.

Existing solutions to the Navier-Stokes equations for the entire flow
field have been obtained for simple body shapes. (See ref. 18.) An accurate
description of the flow field over complex body shapes is facilitated by the
choice of an appropriate coordinate system. Gnoffo (ref. 19) outlined many of
the advantages and disadvantages that are associated with the use of various
coordinate systems which can be used as the basis for the numerical differenc-
ing of the Navier-Stokes equations over complex axisymmetric or two-dimensional
body shapes. Some important considerations are the ability of the coordinate
system to concentrate mesh points near the body for resolving the boundary
layer and near regions of sharp curvature to treat rapid expansions. Orthogo-
nality of coordinate lines to the body simplifies the boundary-condition
specification.

A generalized orthogonal natural coordinate system was presented in ref-
erence 19 which gives close analytic approximations to various complex body
shapes. The body shape approximations avoid the problems of discontinuous
slope or curvature which occur in many aerodynamic configurations and yet are
able to closely approximate these shapes. The purpose of this study is to show
that this coordinate system can in fact be used to obtain the complete flow
field over complex body shapes.

A computational technique has been developed which uses this coordinate
system for obtaining the solution of the Navier-Stokes equations for the entire
flow field. A computer program has been written to describe flow over two-
dimensional body shapes or axisymmetric body shapes. Comparisons with experi-
mental data have been made to verify the technique and to ascertain where prob-
lems due to the nature of the flow or due to numerical instabilities can occur.
Flow fields around the Viking aeroshell and a candidate configuration for a
Jupiter probe are calculated and presented. The analysis has been restricted
to supersonic flow of a perfect gas with free-stream Mach number less than 4.2



and Reynolds numbers of the order of 100 to 1000, for reasons that will be dis-
cussed subsequently.

SYMBOLS
A,,B,C transformation constants, nondimensionalized by Ry*
a speed of sound, nondimensionalized by me
Cp drag coefficient defined in appendix F
* _ *

Cp pressure coefficient, = BE—~—EEZ-

% poo*Vw*Z
cp* specific heat at constant pressure, J/kg-K
e error term defined in equation (22); also exponential
h metric coefficient, nondimensionalized by Ry¥
ho* heat~transfer coefficient, W/m?-K
I total enthalpy, nondimensionalized by Vw*2
i static enthalpy, nondimensionalized by Vafz
k¥ thermal conductivity, W/m-K
L body length, nondimensionalized by Ry¥
L1 intermediate body length, nondimensionalized by Ry¥*
M free-stream Mach number, = V_¥*/a¥
N integer in transformation equation
Ngn Knudsen number, = X _¥/Ry*
Npp Prandtl number, = p¥cp*/k¥*
NRe,°° Reynolds number based on nose radius of curvature, = p ¥V _¥Ry*/u*
NI total number of mesh points in 6-direction
NJ total number of mesh points in n-direction
n integer in transformation equation



P’e’¢

S#

X,¥,2

Ymax

Ot

distance normal to body, m

pressure, nondimensionalized by pw*Ew*z

convective heat transfer, W/me

radius of curvature, nondimensionalized by Ry*

gas constant, J/kg-K

coordinates in transformed space

maximum cross-sectional area, m?

arc length, nondimensionalized by Ry¥

temperature, nondimensionalized by Iw*

free-stream temperature, K

time, nondimensionalized by Ry*/V_¥

component of velocity in x~direction, nondimensionalized by V_¥
component of velocity in O~direction, nondimensionalized by V ¥
component of velocity in y~direction, nondimensionalized by V_¥
free-stream velocity, m/s

component of velocity in r-direction, nondimensionalized by V_¥
Cartesian coordinates, nondimensionalized by Ry*

metric coefficient, nondimensionalized by Ry¥

maximum body radius, nondimensionalized by Ry*

thermal accommodation coefficient

coordinate stretching parameter in equation (17)

ratio of specific heats

shock-layer thickness, m

smoothing parameter in equations (23)

stretched coordinate in computational plane defined in equation (17)




mean free path, m

H viscosity, nondimensionalized by uw*

Um* free-stream viscosity

p density, nondimensionalized by p_*

(O free-stream density, kg/m3

T shear stress

U] angle defining velocity vectors
Superscripts:

n time step index

* signifies dimensional quantity (MKS system)
Subscripts:

aw adiabatic wall

B base

b body

calc calculated

exp experimental

i index on mesh point in 9-direction

J index on mesh point in n-direction

N nose

n index on transformation constants

o} refers to slip boundary condition

r refers to conditions along constant 6 and ¢
s shock

stag stagnation

0 refers to conditions along constant r and ¢



¢ refers to conditions along constant r and 6

© free stream

Bars over symbols generally denote average values; however, in appendix B
the bars denote variables at a predicted time step. (See step 1 of appendix B.)
Arrows over a symbol denote vectors.

COORDINATE SYSTEM
Coordinate Transformation

A generalized curvilinear orthogonal coordinate system which can be used
for approximating various axisymmetric and two-dimensional body shapes is pre-
sented in reference 19. The body shapes include spheres, ellipses, spherically
capped cones, flat-faced cylinders with rounded corners, circular disks, and
planetary probe vehicles. The transformation from the (6,r,$) domain to the
(x,¥,z) domain for an axisymmetric coordinate system is written as

N A
x(8,r,$) = (-B sinh r + C cosh r) cos 6 - E A el cos nb
n=2
- N -
y(6,r,$) = [ (B cosh r - C sinh r) sin 0 + E Apel’ sin nb | cos ¢ > (1
- N 7]
z(0,r,$) = | (B cosh r -~ C sinh r) sin 0 + E Anel’ sin nb | sin ¢
n=2

where N is a positive integer greater than two and A,, B, and C are arbi-
trary constants. A two-dimensional transformation to the x,y plane is obtained
by setting ¢ = O.

Lines of constant r are transformed to circles in the x,y plane as r
increases without limit in the negative direction. Because terms involving
e vanish and -sinh r approaches cosh r as r increases without limit
in the negative direction, equations (1) can be written approximately as

u

x(8,r) = [(B + C) cosh r] cos © (r << 0)
(2)

y(0,r) = [(B + C) cosh r] sin © (r << 0)



The line segment r = 0, 0 £ 6 £ 27 is transformed into a two-dimensional
body in the x,y plane and becomes one boundary of the computational space in the
O,r plane. An axisymmetric body is defined by mapping the line segment r = O,

0 £ 06 =T to the x,y plane and rotating the image around the x-axis 27T radi-
ans. Thus,

A
D
A

Two dimensions, O = 27

N
Xp = C cos 8 = > A, cos nb

n=2
(3)
N
yb=Bsin9+E AnsinnG
n=2
Axisymmetric, 0 £ 0 =7 and 0 £ ¢ & 27
- )
Xp = C cos O - A, cos nb
n=2
N g
Vp = {B sin & + > A, sin n9> cos ¢ ()
n=2
N
zp = |B sin @ + > Ay sin nB) sin ¢
n=2 ~

The lines © = 0 and © = 27 will therefore form two boundaries of the
computational space for two-dimensional problems. The 6 = 0 plane, 6 = 7
plane, ¢ 5 0 plane, and ¢ = 27T plane are the boundaries in computational
space for axisymmetric bodies.

The final boundary of the computational space is chosen as r = r_. It
will be shown in a later section that r_, can be mapped to negative infinity
with one additional transformation. Such a transformation will cause the
inflow-outflow boundary to be mapped to a circle of infinite radius as seen
from equations (2). This transformation will simplify the problem of specifying
inflow and outflow boundary conditions. An example of a typical transformed

body shape is shown in figure 1 with the associated coordinate system.

It should also be noted that the transformation can be written as a con-
formal mapping for two dimensions. By setting

w anx(0,r) + iy(8,r)
D=(B+C)/2

A = (B -0C)/2



and simplifying, the following equation is obtained:
3 N -
w = DelZ _ E Ane'lnz
n=1

where z =6 + ir and i ﬁ\’—1

The definition and orientation of the velocity components are determined
by the coordinate system. The u component of velocity is directed along a
line of constant r in the direction of increasing 6. The v component of
velocity is directed along a line of constant © in the direction of increas-
ing r. Thus, from figure 1, it can be seen that the direction of positive u
is counterclockwise around the body and the direction of positive v is toward
the body.

The detailed derivation of the metric coefficients for this coordinate
system appears in appendix A. It is important to note that the metric coeffi-
cient hg 1is equal to the metric coefficient h,. This equality greatly
reduces the number of calculations that will have to be made when solving the
governing flow equations.

Determination of Body Shape

Methods for determining a large variety of body shapes are discussed in
detail in reference 19. For the sake of completeness, the methods for deter-
mining the body shapes used herein are presented.

For all A, = 0, the transformation from the 6,r plane to the x,y plane
results in families of ellipses. For B = C, the transformation produces a
circle of radius B. For B # C, the transformation results in an ellipse of
eccentricity e, where

1/2
o = \T™mm/
ce

Calculations have been made for configurations approximating planetary
probe vehicles as shown in figures 2 and 3. The true body shape in figure 3
is taken from reference 20. These approximations were obtained by considering
the following parametric equations for a body shape

l
Ccos ® -_> A, cos nb
n=2

Xb

(5)
n

B sin 6 + A, sin nb
n=2

n

¥b

which correspond to equations (3) and (4) with N =4 and ¢ = 0.
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In figure U some basic geometric parameters of a planetary probe are pre-
sented. The radius of curvature of any point on the body can be expressed as

[1+ (dy/dx)2]3/2 [(ax/20)2 + (8y/39)2]3/2

R(9) = = : 6
©) d2y /dx2 (3x/90)(32y/362) - (3y/36)(32x/362) (6)

By defining a nose radius of curvature Ry, a base radius of curvature Rp, a
vehicle length L, a maximum body radius Yp,y, and the length from the nose to
the location of the maximum body radius on the symmetry line L¢, it is possi-
ble to solve for Ay, A3, Ay, B, and C. To specify Ypsy, it is also nec-
essary to determine O ., so that yp(Opay) = ¥max and dyp/d0(Opay) = O.
These specifications result in the following equations:

(B + 4Ay + 3A3 + 2A5)2

- = R(0) = R (7)
-C + 16Ay + 943 + HAp B
(-B + 4Ay - 3A3 + 245)2
-— & R(m) = Ry (8)
C + 16Ay - 9A3 + UAp
2C - 2A3 =L (9)
Ay sin 40pay + A3 sin 36pay + Ap sin 20pay + B sin Opay = Ypay (10)
YAy cos UBpax + 343 cos 30max + 2Ap cos 20pgx + B cos (Opyy) = O (11)

-Ay cos 40pay - A3 cos 3Opax - Ap cos 20pay + C cos Opay

+ Au - A3 + AZ + C = L1 (12)

Equations (7) to (12) can be solved by use of Newton's method to obtain
Ay, A3, Ap, B, C, and Omax- When choosing the values of Ry, Rp, and Lg,
it may prove necessary to pick adjusted values which will give a better overall
approximation to the desired body shape. As pointed out in reference 19, it is
not possible to accurately model all body shapes with equations (3). Therefore,
once the constants are obtained, the analytic approximation has to be compared
with the desired body shape to determine whether agreement is satisfactory. A
trial-and-error approach was established whereby values for Ry, Rg, and Lj
were varied over a narrow range of values which were close to the measured val-
ues for the desired body shape and then the resulting analytic approximation
was compared with the true body shape. The analytic approximations shown in
figures 2 and 3 were obtained in this manner. The parameters which were speci-

9



fied and the resulting values for B, C, A,, A3, and A)j that correspond
to these figures are presented in table I.

ANALYTIC DEVELOPMENT

In order to test the usefulness of the coordinate system just described, a
solution to the supersonic flow at an angle of attack of 0° over blunt, axisym-
metric, or two-dimensional bodies is obtained. The analysis is simplified by

making the following assumptions:

Np, = Constant

up = 0
p = u(T) (using Sutherland's law)

Perfect gas
No radiative heat transfer

The quantity up is the bulk viscosity coefficient which is set equal to zero
in keeping with general practices.

Strictly speaking, the Navier-Stokes equations refer only to the momentum
equations. By following Vincenti and Kruger (ref. 21), the term Navier-Stokes
equations is used herein to refer to the complete set of partial differential
equations that describe the motion of a viscous heat conducting fluid. These
equations, expressed in a generalized orthogonal coordinate system, are nondi-

mensionalized as follows:

h = h*/Ry* Y = Y#/Ry* t = Ry*/V_¥#
p = p*/p_ ¥ u = u*/v ¥ v = vE/V ¥
I = I*/Vm*Z p = p*/pw*vw*2 u = u*/um*

The Navier-Stokes equations written in the transformed coordinate system
may be obtained from references 22 and 23. Since only the steady-state solu-
tion to the governing equations is desired, a term involving the time rate of
change of pressure has been omitted from the energy equation in order to sim-
plify the numerical procedure. The other time derivative terms must be kept in
order to retain the hyperbolic nature of the governing equations in time. The
omission of the transient pressure term prohibits an accurate modeling of the
transient flow situation. However, as noted by Crocco (ref. 24), the unsteady
equations are used strictly as a guide in choosing an iteration procedure.
Allen (ref. 15) notes that the difference scheme can be modified to approximate
a different unsteady equation as long as the steady-state difference equations
and boundary conditions are correct.

10



The convective terms in the governing equations are written in conserva-
tion form as recommended in reference 25 for shock capturing whereas the dissi-
pative terms are expanded so that they no longer retain conservation form.

In preliminary numerical calculations it was found that finite-difference
approximations of terms involving products of metric_coefficientg with the
conservation flow variables (that is, d(hpu)/39, 3[h2(p + puZ)]/ae, and
3(h20uv)/39) caused large errors in the numerical solution. This problem was
most obvious in the free-stream flow ahead of the shock. Values for free-
stream density along the stagnation streamline were in error by as much as
4 percent. The corresponding Mach numbers differed from the free-stream con-
dition by as much as 10 percent for M_ =2 and Y = 1.4. The governing equa-
tions were rewritten in a form which separated derivatives of metric coeffi-
cients from derivatives of conservation flow variables. The derivatives of the
metric coefficients are analytic functions of © and r which are easily
obtained from equations (AY4). The derivatives of the conservation flow vari-
ables are approximated by finite-difference formulas. The governing partial
differential equations expanded in this manner become for:

Continuity:
3p —1E(pu) dev) (13T 1 9m 19Y 1 9n (13)
ot hl_ae T e TPY e Thee) T \yar Thoar A

O-momentum:

h“Nge,
1 32y 32y 3y 1 3Y\du  [du 1 BY)Bu (1 13Y 7. 103h aul\av
*3“aeaz«*“;‘*g(a—e*“ia_)a—e*“(ﬁ*“?*r"r* §”YT~*§“ET*';)3—
(Tuil. e, |2, 100 2 1n\ _uof1any? 2 192 192
3Hn38 *336)or Y |3 H"hge2 "3HnDe) TIMTW) "3HTo2 Hhpe2
+2,12n 13y | 13h13Y 20u138Y 2313 duidh| |1 1 3%n
3R Y %6 horY3r "33 Y3 “ 33 nhd6 oarhor| T|3HHI ar

203w 193Y Hau13h _ 3ulsh
339Y3r’+386har'arﬁ'ﬁ (1)4)

11



r-momentum:

3(pv) _ =1 3(puv) _ 3(p + pv3) 193Y 223h of1 3Y 193) > 18n
3t 'H‘[ 38t ar  *PWIethae tY\TErthar/ TP

Jyla 7,13 Andu (3 lﬂ)?_‘_' Apl1y 3_11>ﬂ
*(3“13 MR *ae) *(a *Wyaw/w T3V T T arer

13h 193Y 2

Energy:

I _ -1/ 9pul | dpvI (1 3Y 1
_t_'h_[_ae * T *PU\Y TR D
J2193Y 3v 82y 2

3Y 3b r 32 3 236 or

13h13hn 32h

"hawha "

L)

h30Y h 5p2 38

12

oy 1 3Y

(15)

(16)

(Equation continued on next page)



order of

3%y du ov Y 3v 2 ol13h13Y  123%Y 1 3°hn 1 dh

T er tar @ YUY T3V hr Yar Y2 thg2 - (E 3r
_1 . 3uf23Y 13n\ 2/ 32u . 193Y _ du\ 1 13h 193y 2 32y

37 ar(r 3 " h ) §(V 3 or ' Y or ¥ “§> 3 “V(H ®Y3r Y30

1 dh 2 3y du 5 1 dh 1 3I 13y 321
+ 3 UVl— 57 - = + U g~ = - == —
3 (has Ya'é) 3 H Y3 *
r h ar thRewNPr' b Y 3 30
3%y (av)Z dv 1 3Y 32u  (3u\ du 1 3Y 3
_ 9cv av dv 13Y 3%u y|dI
{V 362 T\ *VEIwtUset <§€> *U3® Y * 36|96 T (V
gg) 81 13y 321 32y [3v\2 dv 19y 3%u  [3u)2
*“ae]*“ rY r*arz“'apz*'(z'a?) V3 Yar 3,,2"(3?)

The numerical solutions obtained by differencing the equations in this manner
brought all free-stream properties within 1 percent of an undisturbed field.

(16)

It should be noted that equations (13) to (16) are not in strict conserva-

(40)2 + (Ar)2 is introduced.

An = 0 has the following properties:

tion form in the sense that when they are applied to an undisturbed uniform

flow, they do not return a uniform flow after one iteration.
For example, a uniform two-dimensional

flow written in the coordinate system as expressed by equations (1) with B = 1,
c =1,

An error on the

13



p =1
h = e ¥
Y =1

After one iteration (predictor step) on these conditions, the continuity equa-
tion yields

ol - Ater{i[—sin (6 + AG; Z@sin»(e - Ae)} + cos %}

o+l 5 pft 4 Atel cos 9<§£E_%g_:_l>

pn+1

“AB2 Yy
pn+1 = o0 4 Atel cos 6(—%%— + %%— + .. >

These errors have shown no sign of seriously disturbing the final solution.

An additional coordinate transformation is utilized which simplifies the
treatment of the inflow and outflow boundary conditions and gives some control
on the density of mesh points near the body in a direction normal to the body.
A new coordinate mn is defined so that

r = 8 loge M (n = er/B; B> 0) (17)

where -2 < r =0 and 0 <n 2 1. This coordinate stretching maps the inflow
and outflow boundary conditions to infinity. All boundary conditions at infin-
ity are known. This coordinate stretching does not affect the orthogonality of
the coordinate system. Such a transformation was used by Kitchens (ref. 17) in
order to eliminate rarefaction waves in a wake induced by fixing free-stream
boundary conditions at a finite distance downstream of a body. Derivatives
with respect to r are written as derivatives with respect to N as follows:
~

(18)

32( ) _ 3]3() Ion
ar 36 ~ on_ 86 |or >

92 >-8_A<_>_d_ndn__aﬂ_>m>2+a< ) 1dn
32 Bn_ an dr |[dr ~ an? ar an B dr

an _ 1 r/p _ 1N

dr = B B /



All derivatives of flow properties with respect to r in equations (13) to (16)
are now replaced by their counterparts in equations (18).

On the line of symmetry the 6-momentum equation is not solved because
u = 0. For axisymmetric problems, the limiting forms of the conservation equa-
tions for mass, r-momentum, and energy must be obtained because the factor 1/
which appears in many of the terms in those equations increases without limit
as O approaches 0 or 1. (Note that Y = 1 for two-dimensional problems.)
The limiting form of these equations is easily obtained by applying L'Hospitals
rule to all terms in these equations which are multiplied by 1/¥.

NUMERICAL TECHNIQUE

A modification of the Brailovskaya scheme which was introduced by Allen
and Cheng (refs. 15 and 26) was applied to equations (13) to (16) to obtain the
numerical solutions presented herein. The differencing technique is presented
in appendix B. This particular method was chosen because the viscous stability
1imit in the Navier-Stokes equations is removed in Cartesian coordinates for
constant viscosity. Allen and Cheng point out that when there is a large expan-
sion of the flow around a corner or when the density in the near wake is small,
the stability limit on the time step based on the diffusion terms can be
severely restrictive as compared with the stability limit based on the invisecid
terms. The elimination of this stability limit makes their modification to
Brailovskaya's scheme very attractive. The stability 1imit on the time step
for the inviscid portion of the governing equations is derived in reference 27.
This 1imit can be written in Cartesian coordinates as

At = - - (19)
2 2

lul o dvl o\, (L
Ax Ay Ax Ay

In the transformed coordinate system, this limit is written as

—_

S (20)

2 2
lul_ dvin a\f1\" , /1
h A8 ¥ hB An * h \[\ AB B An

This transformed stability limit was obtained by substituting the terms
for velocity and arc length in the transformed plane that correspond to the
equivalent terms in the Cartesian plane. The stability limit from equa-
tion (20) was used in all calculations without any indication of numerical
instability. Also, comparisons were made in regions of severe expansion
(around the corner of the Viking aeroshell, for example) and it was found that
the actual time increment used exceeded the viscous limit by more than a factor
of 20 (see table II), where the viscous stability limit is (ref. 27)

15
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(21)

Convergence Criteria

The modified form of the Brailovskaya method is used herein to obtain the
steady-state solution of the governing equations. Because the solution is
approached in an iterative manner, it is necessary to establish some criteria
to insure that the results have in fact converged to a steady state. A vari-
able e 1is defined so that

n+1 n
- 22
e = |00 (22)
P max

i,

The variation of e as a function of iteration number is shown in fig-
ure 5 for different mesh sizes. The solution is said to be converged when the
value of e becomes less than some small number &. Care must be exercised in
choosing the value of & as can be seen in figure 5. The value of € should
be chosen as some small number which is below the level where the e variation
begins to level out. For example, in the case of the e variation for a grid
of 51 x 50 with the stretching parameter B = 1, it can be seen that e starts
to level out after 2000 iterations at 0.0002. When it was finally established
that the variation of e had leveled and was starting a much slower decrease,
a value of e equal to 0.0001 was chosen as the convergence criteria. A com-
parison of results for gi is given in table III at various iteration levels

n
to show the effect that var?ous values of & have on the static enthalpy
derivative at the wall. The enthalpy derivative should be very sensitive to
any changes occurring in the flow field. The results from table III indicate
that for a mesh size of 51 x 100, there is less than a 2-percent difference

between the solution after 6000 iterations and the solution after 4000
iterations.

Fourth-Order Smoothing

Preliminary calculations indicated that some kind of damping or smoothing
routine was necessary to eliminate numerical instabilities, especially in the
vieinity of the shock. A nonphysical damping function was used to eliminate
these instabilities. (See ref. 1.) Terms of fourth order in the spatial grid

are used to smooth results after every iteration as indicated in the following
equations.
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The tilde symbol over the flow variables indicates the undamped results from the
second step of the difference scheme.

The five-point formulas for the fourth-order derivatives have the form

M
(a0y4 2200 on 0

.+ pR . . .
i+2,j i-2,3 i+1,] i-1,3 i,J

- u(o? + on ) + 6p0 (24)
When the five-point formula for the fourth-order derivative involves property
values across a line of symmetry, then the appropriate symmetric or antisym-
metric value of the property must be substituted into equation (24); otherwise,
nonzero values for 9p/30 and 0p/90 on the symmetry line will result.

For j=1 or j = NJ, no damping is used in the Nn-direction. For j £ 2
3t

or j 2 NJ - 1, the five-point formula for (An)% cannot be used because
an

it involves points outside of the computational space. Four-point formulas for
third-order derivatives in the N-direction are used when j =2 or J = NJ - 1.
These formulas have the form

33p

(An)3 g;g = Py, j+2 = Pi,j-1 = 3(Pi ja1 - Pi,3) (j = 2) (25)
33p

~(An)3 g—g = Py, -2 = Pi,j+1 - 3(Pi j-1 = P1,3) (3 =NJ = 1) (26)
n
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33¢(
When j = 2, the expression for (An)3 3 from equation (25) is substituted
an
y 340 .
for the term (An) in equations (23); when j = NJ - 1, the expression
an
33 alt( )
for -(An)3 3 from equation (26) is substituted for the term (An)¥ m
an an

in equations (23).

In a stability analysis on the inviscid equations, Barnwell (ref. 1) shows
that the damping coefficient must satisfy the inequality
0 es 1/24 (27)
the smallest value of € 1in this range which allows a stable smooth
should be used. However, because of the large amount of computer time
required to run a problem to convergence, no systematic search for an "ideal"
value of € was undertaken. It was found that € = 0.001 would result in
stable solutions for most of the cases considered herein.

Ideally,
solution

Initial Conditions

Transformation of uniform velocity field.- In order to establish realistic
initial conditions, it is necessary to resolve a uniform flow in the x,y plane
to the equivalent condition in the ©O,r plane. This can be accomplished in the
following manner. Let a uniform velocity field of magnitude V, approach a
body in the x,y plane at 0° angle of attack. All angles are measured from
® = 0 in a counterclockwise direction. Let VU be defined as the angle of the
vector tangent to a line of constant r in the direction of increasing 6.
From consideration of figure 6, it may be determined that

u =V, cos ¥

(28)
v

-V, sin ¥

It is now necessary to determine cos y and sin Y as a function of 0

and r.

The differentials dx and dy along a line of constant r can be deter-

mined from equations (1) as

- - )
N
dx = | (B sinh r - C cosh r) sin 0 + E nApe’ sin nb|do
L n=2 i
> (29)
r N T
dy = | (B cosh r - C sinh r) cos ® + > nA e’ cos nb|dd
n=2
- 4
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From figure 6 and equations (29) and (A4), it can be shown that

N A
(B sinh r - C cosh r) sin © + >  nA,e?’ sin nb
cos U = dx L S ___n=2
T Vax2 + dy2 h
dx< + dy > (30)
N
(B cosh r - C sinh r) cos © + > nAel’ cos nd
. dy n=2
sin V=2 ————= ~------ -~ e —EE
dx2 + dy2 P,

Thus, the initial uniform flow field may be resolved into its components u
and Vv in the transformed system by using equations (28) and (30).

Initialization procedure.- When the first set of calculations were per-
formed on the inviscid equations, the initial conditions were prescribed as a
uniform velocity field everywhere except at the body where v was set equal
to 0. This situation corresponded to a body suddenly materializing at rest in
a supersonic stream at time t = 0. Problems developed as the shock started to
form near the body. Negative values of static enthalpy occurred between the
shock and the forebody; thus, any further calculations are terminated. A prob-
able cause of these negative values was in the way surface boundary conditions
are obtained. In most "shock capturing" numerical methods, in which no dis-
crete shocks are assumed but rather are allowed to be smeared over several mesh
points, it is common to see a slight overshoot and undershoot of properties on
either side of the shock (ref. 25). An extrapolation procedure was used to
obtain pressure on the body but this extrapolation was invalid when the proper-
ties used in the extrapolation were in the region of the developing shock.

Thus, either the method of obtaining the boundary condition had to be
changed or the initial flow conditions had to be altered. Kitchens (ref. 17)
took the first approach and allowed the surface velocity components to vary
linearly from the uniform flow values to zero after some period of time tq.
This specification corresponds to a porous body with the amount of mass flux
through the surface decreasing to zero between times t = 0 and t = t4. The
no-slip condition is then specified on the surface for times t 2 t1. However,
it was found to be simpler in the present program to alter the initial condi-
tions in such a way that the shock would develop further away from the body.
This was accomplished by calculating the transformed velocity components and
multiplying the result by 1 - N. Then, the total enthalpy at a point was set
equal to the free-stream static enthalpy plus one-half of the velocity squared.
Thus,

‘\
u=(1-mn)V, cos ¥
v = =(1 - MV, sin ¥ (31)
1 1
I =z —— — &+ —(ud 2
oy - 1)Mw? + 2(u + V&)
o
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The variable n 1 corresponds to the body so that the no-slip condition
is imposed. When 1 0, the velocities are unchanged from the uniform flow
conditions. In the O6,n computational plane the initialized velocities vary
linearly from n =0 to n = 1. In the x,y plane this alteration corresponds
to an exponential damping of the uniform velocity field as the body is
approached from the far field. This specification does not model any physi-
cally realistic situation but does allow a steady-state solution to be
obtained.

n u

Boundary Conditions and Mesh Positioning

An example of positioning of mesh points in the 6,n computational plane
is shown in figure 7. Note that mesh points are positioned on the line seg-
ments 6 = 0 and © 5T and that mesh points are positioned one-half cell
width away from the body, n = 1, and the inflow and outflow boundary, n = 0.
This 1s the same technique used by Allen (ref. 15) and some explanation for the
reasoning behind the approach will be given. Allen begins the derivation of
the numerical approach by writing the conservation laws of mass, momentum, and
energy in integral form. He works directly from the integral form of the equa-
tions to obtain all the difference approximations. It should be noted that the
same set of difference equations presented herein could be obtained from the
conservation laws of mass, momentum, and energy written in differential form.
However, the integral approach gives an additional insight to the derivation of
the difference equations which can be lost if various second-~order accurate
difference approximations to derivatives that are obtained from Taylor series
expansions are routinely substituted into the differential form of the conser-
vation equations.

All values of properties at a mesh point represent the average value of
the property in the cell. Flux terms across the sides of a cell are written in
terms of the average values. For example,

g —
pu ¢ = E’:(DU)i”’j + (Du)i,j:}

i+§;j

where BE represents the average value in the cell and pu is the mass flux
from the i cell to the i + 1 cell.

When these values for fluxes and derivatives at the boundaries of a cell
are substituted into the integral form of the conservation laws, the difference
formulations of the conservation equations are obtained. For example, when sub-
stituting into the integral form of the equation for the conservation of mass
in Cartesian coordinates, one finally obtains
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As can be seen, a second-order accurate central difference approximation
results for the partial derivatives 9pU/dx and 9pV/dy which, as stated
before, could have been obtained directly from the differential form of the
conservation laws. In like manner the second derivative of U with respect
to x would be written

i+5,J 7
32y 1 {3U 2’ 1 |Uis1,5 - Ui,5  Ui,j - Uio1,j
9x2/. . "~ Ax\ox 1. T Ax Ax Ax

1,J 1'57\]

Uis1,5 = 203,35 + Ui,

Ax2

which is the second-order accurate central difference approximation to that
derivative.

In deriving the difference approximations to the derivatives in the gov-
erning equations, the values of fluxes and derivatives .of velocities on the
sides of the computational cell are the basis of the approximation. Thus,
Allen (ref. 15) points out "The greatest advantage of the integral formulation
is the conceptual aid it gives in applying boundary conditions. It indicates
that wall boundaries would be better placed along cell edges rather than
through mesh points."
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Consequently, in the generalized orthogonal coordinate system used herein
all the property derivatives which appear in equations (13) to (16), except for
6 derivatives on a line of symmetry, were approximated on the basis of the
values of properties on the sides of a cell wall. All derivatives of metric
coefficients are evaluated analytically. In most cases, that is, for all the
interior points, the values at the cell wall are calculated by using the aver-
age values of properties in the cells on either side of the wall. Methods for
establishing cell wall values at the boundaries are discussed in appendix C.

Symmetry Conditions

The computational boundaries along the lines © = 0 and ©6 = T corre-
spond to a line of symmetry in the flow. The cell centers are placed on these
boundaries to facilitate the calculations of the limiting form of the governing
equations for axisymmetric flow situations. The symmetry conditions are

Pi-n,j = P14n,j PNI+n,j = PNI-n,J
Viin,3 = Vi, j VNI+n,j = VNI-n,j
P1-n,j = Pl4n,j PNI+n,j = PNI-n,j
Iion, 5 = T14n, 5 INI+n,3 = INI-n,j
Uion,j = ~Wl+n, j UNT+n,j = ~UNI-n, j
ul,j =0 uNz,j = 0

In preliminary calculations it was found that a more accurate stagnation
line solution with smoother property distributions along the body could be
obtained if the derivatives with respect to 6 were calculated by using a
fourth-order accurate central difference formula. If a second-order accurate
central difference formula is used to obtain derivatives with respect to @
across the symmetry line, then 3(pu)/36, 3(puv)/36, and 3Ju/d0 are calcu-
lated by using information from only one adjacent cell. A fourth-order accu-
rate central difference approximation to the 0 derivatives feeds information
from two adjacent cells to the symmetry line calculations. At 1 = 1, for
example,

3(pu) 1

(-pu 8ousr - 8pu u_1) + 0(aet)
36 12 ap PU3 T SPU2 - BPto w PH-1)

1
= 5 (-20u3 + 160uz) + o(ag™)

This differencing scheme does not follow the integral approach explained in the
earlier sections. However, it was felt that the improved solutions obtained in
this manner justified the special treatment of the symmetry line.
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RESULTS AND DISCUSSION

A computational technique based on the numerical method described in the
previous section has been programmed for use in the transformed coordinate sys-~
tem. The program has been written to describe supersonic flow over two-
dimensional or axisymmetric body shapes. Comparisons with experimental data
are presented which verify the technique. Flow fields around the Viking aero-
shell and a candidate configuration for a Jupiter probe are also calculated and
presented. A discussion of the program's range of applicability along with the
presentation of some computational results follows.

Range of Applicability

Practical limitations on storage space and execution time on the computer
restrict the number of mesh points which can be used to define a flow field.
The program requires 75 000 octal words of central memory for a mesh size of
51 x 50 and 121 000 octal words of central memory for a mesh size of 51 x 100.
Execution time on the Cyber 175 with an optimization for fast execution is
approximately 0.9 sec per iteration per 1000 grid points.

The stretching parameter £ makes it possible to concentrate many grid
points near the body at the expense of producing a sparse distribution of mesh
points far away from the body. Some examples of the effects of the stretching
parameter on mesh positioning are presented in table IV. For a fixed number of
mesh points in the Nn-direction, it can be seen that as B 1is decreased, the
outermost mesh points are drawn closer to the body. Consequently, a lower
limit on B must be imposed in order that the shock may be captured and the
flow in the wake computed.

By using a Blasius type solution for cases where boundary-layer theory
applies, it can be shown that the nondimensional laminar boundary-layer thick-
ness over an axisymmetric or two-dimensional blunt body is on the order of

M?/ﬂNRe,m,RN*' An adequate resolution of the boundary layer requires the

placement of several mesh points across the actual boundary-layer thickness.
Therefore, a large number of mesh points in the n-direction and a small value
of the stretching parameter B are needed to position enough grid points in
the boundary layer for very large Reynolds number flows. As indicated earlier
in table IV, the use of coordinate stretching alone may pull all the mesh
points too close to the body and prevent an adequate description of the bow
shock shape and flow in the wake. For example, some typical flow field results
indicate that the bow shock is stretched over three to four grid points.
Morduchow and Libby (ref. 28) show that if one assumes that continuum assump-
tions apply in a shock that is no less than seven mean free paths thick, then
the Mach number of the flow must be less than 1.3. They express the mean free
path of a molecule ahead of the shock as

A_* R A (32)
= 2
®  0.35 p* \[BR*T_* >
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By expressing

He* M (YR¥T *Ry*

puf NRe, oo

the Knudsen number Ny, is obtained as

)‘oo* 1 i1l Moo
N = = (33)
Kn = g 0.35\[;: NRe, o

Since the nondimensional shock thickness is on the order of the Knudsen number,
this relationship enables one to make an approximation of the size of the
region over which the shock is smeared. Admittedly, the governing equations
used herein are not sufficient to resolve the flow through the shock. However,
resolution of the bow shock is needed to avoid smearing the shock throughout a
large portion of the shock layer. Therefore, for the purposes of resolving the
flow details with the tools of this analysis, computations are restricted to
low Reynolds number flows.

The free-stream Reynolds number, however, cannot be allowed to become too
small or continuum theory, upon which the Navier-Stokes equations are based, is
not valid. Probstein defines a Knudsen number in terms of a mean free path in
the shock layer divided by the shock-layer thickness,

Ag* Ak M

[+ o]

~ ~

Ny = ~ ~
Kn
Ag* Ry* NRe,m

and uses this parameter to roughly delimit various flow regimes (refs. 29

and 30). In particular, he defines two flow regimes which are within the capa-
bilities of this analysis and place a lower limit on the Reynolds number range.
In the viscous layer regime "the shock layer is a fully viscous continuum ame-
nable to treatment with the complete Navier-Stokes equations, and the shock
wave may be treated as a discontinuity across which the Hugoniot (shock) rela-
tions apply" (ref. 30). This regime is delimited by

M >‘S* p*
=z <<\°° §0(1)<1
p*

NRe,m Ag* ]
In the incipient merged layer regime, the shock layer is still treated as a con-

tinuum but the shock can no longer be considered a discontinuity satisfying the
classical Rankine-Hugoniot relations. This regime is delimited by
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Mco >\S*
~ — << 1
NRe yco AS*

On the other hand, when

M, Ag*

~ e~
~

NRe,co AS*

the fully merged layer regime is entered and it is incorrect to assume a con-
tinuum state although Probstein cites several papers which indicate that the
Navier-Stokes equations can be used to obtain estimates for skin friection and
heat transfer, and to obtain mean density and velocity distributions.

It should be noted that as the flow expands around the body into the wake,
the mean free path can increase by approximately a factor of 20; this increase
corresponds to the change of u*/p* T*¥ from the forebody stagnation region to
the wake. Thus, one could be in the viscous layer or incipient merged layer
regime in the forebody and enter the equivalent of a fully merged layer regime
in the wake.

In order to keep the present analysis simple, the no-slip wall boundary
conditions on velocity and temperature have been applied. 1In fact, the condi-
tion for zero velocity slip has been used to establish the specialized form
of the normal velocity derivatives in the vicinity of the wall. Probstein
(ref. 30) derives a condition for negligible slip as

Ag* To*
— << N\ —
Ag* Tp*

In all the cases considered herein, Tg*¥/Tp* 2 1. However, it is empha-
sized that this relationship does not mean that slip does not exist as an
identifiable phenomenon but only that its effect on mean aerodynamic quantities
is not large. Schaaf and Chambré (ref. 31) roughly bound a slip flow regime on
the basis of experimental evidence by

M
0
0.01 < ——— < 0.1 (NRe, oo > 1)

JNRG y 0

Some of the experimental data used as a basis of comparison in the next section
fall within this range and modifications to the solution technique are dis-
cussed in that section. A more detailed examination of the effects of slip in
this Mach number and Reynolds number range will be presented with the results
of that comparison.

A Reynolds number range may therefore be summarized as follows:
0(100) < NRe, < 0(1000)
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where the upper limit is imposed because of an inability to resolve a thin
boundary layer and the lower limit is imposed so that continuum theory is
applicable. A correction for velocity and temperature slip may be required
at the lower Reynolds number limit, depending on other properties of the flow
field.

The process of capturing a strong shock and spreading the discontinuity
over several mesh points can result in a small overshoot and undershoot of
properties on either side of the shock. The magnitude of the overshoot
decreases with increasing damping factor and increases with increasing mesh
point separation. The bow shock is closest to the body, in a region of rela-
tively dense mesh spacing, in the stagnation region; as the bow shock wraps
around the body and approaches the Mach angle, it moves away from the body
into an area of relatively sparse concentration of mesh points. It has been
observed that as the bow shock forms in high Mach number flow, negative static
enthalpies are calculated in the vicinity of the shock. These negative static
enthalpies are a consequence of the velocity overshoot on the inflow side of
the shock.

The static enthalpy is computed by subtracting (u2 + v2)/2 from the
total enthalpy I. The total enthalpy is approximately constant across the
shock and is equal to

: 1 1
=T/ + —
Q0

(y - )M 2 2

By defining V¢ as the calculated velocity ahead of the shock, the per-
cent overshoot of the velocity 0p is defined as

(V1% - Voo*)
Op =100 — = 1OO(V1 - 1)
v *

o]

The calculated static enthalpy ahead of the shock 1s then expressed as

1 1<Op )2 1 Op  (0p)2

!

" (y - 1)m2 100 20 000
Consequently, if

100
0 > ——mM—
(y = M2

a negative static enthalpy is calculated and the program execution is
terminated.

As can be seen in these relationships, the allowable percent overshoot
decreases as Moo increases. It has been found that with a grid size of
51 x 50, the onset of the problem of calculating negative static enthalpies
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ahead of a bow shock occurs at Mm ~ 4 for a sphere and Mw ~ 3.5 for a
cylinder with vy = 1.4. The Mach number limit is slightly higher for a sphere
because the bow shock stands closer to the body in an area with a relatively
large concentration of mesh points.

It should be noted that improvements to the numerical approach can be made
to extend the Mach number and Reynolds number range and to reduce the execution
time on the computer. The technique can be reprogrammed to run on the STAR 100
computer with a potential execution time reduction of an order of magnitude
(ref. 32). The numerical approach can also be altered so that the stability
limit on At 1is increased by using an alternating direction implicit method or
partial implicitization (refs. 33 and 34). A shock fitting technique can be
applied so that the bow shock is treated as a discontinuity which floats
between grid points (ref. 35). This modification will extend the Mach number
range and will remove the requirement of a large number of mesh points in the
viecinity of the shock. Consequently, a more efficient coordinate stretching
routine (ref. 36) can be used to include more points near the body and to com-
pute higher Reynolds number flows.

Experimental Comparisons

Experimental pressure coefficient and convective heat-transfer coefficient
distributions were obtained over a circular cylinder normal to a supersonic
rarefied airstream in the Mach number range 1.3 to 5.9, the Reynolds number
range 19 to 2050, and at two cylinder wall average temperature levels of 90 K
and 210 K in the low-density wind-tunnel facility of the University of
California at Berkeley by Tewfik and Giedt (ref. 37). Detailed comparison
cases were run with the program described herein for a Mach number of 1.90 and
a Reynolds number of 105.

Pressure coefficient comparisons for the case of an adiabatic wall are
presented in figure 8. Close agreement is obtained between the calculated and
experimental results over the forebody of the cylinder through a value of

v

m e > The calculated pressure coefficients on the base for the range

0

A

S]

WA
wil3a w|3A

fall slightly below the experimental results but the comparisons

are still generally good here. The pressure coefficient over the cylinder for a
cold wall case (Tp = 90 K) follows much the same trend as the adiabatic compar-
ison (fig. 9). The densities near the wall in the wake for this case, and con-
sequently the molecular mean free path, have changed by approximately a factor
of 10 from the stagnation region to the base.

A recirculation region is formed in the rear stagnation area of the cylin-
der. The u component of velocity at the mesh point closest to the body

97
changed sign at I = 10 (?b = 36>. The recirculation region is roughly bounded
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by two stagnation points along the axis of symmetry in the wake, one at the
body (x = 1, y = 0) and the other approximately one body diameter downstream
at x = 2.2, y = 0. A study of the onset of separation from the body in the
base region is presented in appendix D.

Convective heat-transfer coefficients are compared in figure 10 for an
average wall temperature of 90 K and for a linearly varying wall temperature
which more closely approximates the actual experimental temperature variation.
These heat-transfer coefficients were evaluated as follows:

* * __BT*
Pt = K on*
vV %21
T*® - i
cp*
Ry¥hB An
An¥* = —RN*h A 2 - —m—
n
qc* (-k*/cp*) (u*/u¥*) (1/Ry*nB) 3i/dn|, ~cp *u¥ 1 31
ho* = = e - = 2 —
e (1/¢p*) (igy - ip) NprRy*n8 iy - ip |

As indicated in the figure, the results are approximately 25 percent greater
than experimental results in the forebody. Calculations were performed with
twice the number of mesh points in the normal direction, and with a stretching
parameter of 0.5 to bring the mesh points even closer to the body. Changes in
heat transfer were insignificant with the finer mesh (less than 4 percent of
the coarser mesh solution). The results of figure 10 were used to compute con-
vective heat transfer so that the actual heat-transfer errors could be measured.
The convective heat-transfer results are presented in figures 11 and 12 where

* * * *
Qe,exp B hc,exp(Taw,exp - Tb,exp)

* * * *
dc,cale = he,cale(Taw,cale = Tb,calc)

However, comparisons in the stagnation region are still in error by approx-
imately 25 percent and remain at about that level over most of the body. For
low temperatures (=100 K) and at 1 atmosphere pressure, the National Bureau of
Standards tables (ref. 38) show the Prandtl number at approximately 0.77 for
air. The convective heat transfer for a linear temperature variation with
Npp = 0.77 was then computed and the results appear in figure 12. Errors in
the stagnation region have been reduced to approximately 18 percent but the
overall comparison is still poor. The viscosities computed by Sutherland's
equation were found to be within 5 percent of the experimental data (ref. 39)
at the wall temperature range 80 K < T*¥ < 110 K and the effects of € on the
enthalpy derivatives were found to be small (see appendix E); therefore, these
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factors could not account for the errors of 18 percent in the stagnation
region. Consequently, it was decided that slip conditions must be important
in this Mach number and Reynolds number range.

A condition for temperature slip as a boundary condition was incorporated
into the program as follows. The condition for temperature slip (ref. 31),
velocity slip being ignored, can be expressed as

2 -0t 2y % T
To* - Tp* = (34)

(o]
[ 1.26{? 5;¥;;? (35)

In equation (34), a4 is the thermal accommodation coefficient and T,
is the slip temperature. A value for o = 0.9 has been found to be repre-
sentative of values for thermal accommodation coefficients as presented in ref-
erence 31. Equation (34) can be simplified by using equation (35}, Sutherland's
law, and the equation of state to obtain

M, 2-ag 2 1.26 Ho 1

i = i - “ ( - 1) -_— (36)
to = 7b Y Npp °lng an

NRe,w O Y +

For zero velocity slip the static enthalpies in equation (36) can be replaced
by the total enthalpies. By substituting the finite-difference formulation for

aI
5—- from equation (C4), the slip value of wall enthalpy may be obtained
Nlo

impliecitly from

1 n-1

i
T My 2-0¢ 2 1,26 Ho"T INJ 1 - 91Ny
Ty - Feor =D 10~
hB |Npe a Y + 1 Npp o 3 An

o Po”
R = e LT SRt L (37)
8 o - Fy = D Mo ™ T -1
. t 2 Ee—Tyl 26 Ho Vlon'1
hB3 An|Npe ,, Q@ Y + 1 Npr  p.0

Convective heat transfer was calculated by use of this temperature jump
condition and good comparisons were observed with the experimental data in fig-
ures 11 and 12. For this Mach number and Reynolds number combination, it is
clear that the proper slip boundary conditions are necessary for calculating
heat transfer.

Berezkin, et al. (ref. U40) applied holographic interferometry to the
supersonic low density gas flow about a spherical body at a Reynolds number
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of approximately 1750. Shadow and interference images of the density field
were obtained in the shock layer of a spherical projectile at Mach 1.93 using

a Mach-Zehnder interferometer. Density distributions are presented along two
vertical lines corresponding to x = -1, 0<y<yg and x =0, 1<y<yg.
Experimental values for shock standoff distance were not presented and all the
distributions are nondimensionalized by the distance, yg - yp. The analytic
value of shock standoff distance has been computed from the midpoint of the
captured shock. Experimental and analytical results for the density variation
are presented in figures 13 and 14. Agreement is good across most of the shock
layer. Discrepancies near the wall occur because the wall temperature in the
experimental case is not at a steady state. (An adiabatic wall was assumed for
the purpose of making these calculations.) By imposing a constant wall temper-
ature corresponding to ip = Iy = O.6Im, the density agreed well near the wall
at x = 0 but was too high near the stagnation point at x = -1. No further
attempts were made to approximate the unsteady nature of the wall temperature.

The characteristics of the solution in the vicinity of a shock are well
demonstrated in figures 13 and 14. The locations of the mesh points used to
calculate these distributions are marked with crosses. These solutions were
obtained with two different damping constants, € = 0.005 and € = 0.04. The
results for the smaller value of € (fig. 14) show a sharper shock profile
with more of a density undershoot as compared with the € = 0.04 results.
Because of the nature of the coordinate system, the density profile along the
line X = -1 had to be obtained by linearly interpolating between mesh points
in the n-direction. The cross marks which appear on the shock in figure 13
refer to interpolated mesh points and consequently distort the effect of € in

that figure.

An attempt has been made to verify a shock standoff distance calculation
by comparing it with the experimental data for supersonic flow over a sphere
with M = 4.2, NRe, = 200, Tp* = T:tag = 300 K in nitrogen. An electron

beam X-ray technique was used to obtain measurements of the density along the
stagnation streamline of a spherical model (ref. 41). This Mach number is on
the border of conditions for which the occurrence of a velocity overshoot can
cause the calculation of a negative static enthalpy. In this particular case,
for a mesh size of 51 x 50 and B = 0.5, it was determined on the basis of
experimental evidence that there were approximately four mesh points across the
shock on the stagnation line. Consequently, there were no problems in evaluat-
ing static enthalpies ahead of the shock in the stagnation region. However, as
the shock started to form around the body, it entered a region where mesh
points became separated by larger distances. After approximately 350 itera-
tions, a negative static enthalpy was calculated for this case at a value of

27
® * —. A modification was made in the program logic which set the static

enthalpy equal to the free-stream static enthalpy whenever a negative value was
computed. The density profile across the shock, after 2000 iterations with
this modification, is presented in figure 15. Comparisons here show good
agreement with experimental data.
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Flow Fields Over Planetary Probes

The analytic approximations which correspond to the Viking aeroshell and to
a Jupiter probe as shown in figures 2 and 3 and defined in table I were used to
compute the flow fields over typical entry bodies at M_ = 2 and NRe,w = 100.
There are no experimental data currently available for these vehicles at this
Mach number and Reynolds number range. The previous comparisons of calculated
and experimental density distributions, heat-transfer distributions, and shock
predictions indicate that the calculated flow field for the planetary probes
should be representative of the actual fields. Flow fields were computed over
the Viking aeroshell with a cold wall boundary condition, Iy = O.6Iw, and an
adiabatic wall boundary condition using Yy = 1.285, Np,. = 0.685, and
1»* = 222 K. A flow field over the Jupiter probe was computed with an adia-
batic wall condition and vy = 1.667, Npn = 0.675, and T_* = 277 K. The grid
size for all the cases was 51 x 50 with B = 1 and € = 0.04.

A contour plot of density over the Viking aeroshell is shown in figure 16
for the adiabatic case and in figure 17 for the cold wall case. Contour lines
were obtained by using the program CONTOUR (ref. 42). CONTOUR prepares a
Cartesian grid system based on interpolated values from the transformed coordi-
nate system. Contour lines are then plotted based on interpolation from the
Cartesian grid. Consequently, there is some distortion in the density contours
due to the double interpolation and due to differences in the concentrations of
mesh points between the Cartesian grid (which gives a uniform concentration of
mesh points through the field) and the transformed coordinate system (which
concentrates mesh points close to the body). Irregularities in contour lines
are caused by these distortions.

The bow shock is shown clearly in both figures with the Mach angle
approaching 60° as would be expected for Mco o 2. Based on an argument that
the nondimensional shock thickness is on the order of the Knudsen number, it
appears that the calculated shock thickness is approximately 10 times the
actual value. The shock in the stagnation region is smeared over three mesh
points which is consistent with results obtained in the experimental comparison
section. Because of the computational costs, no attempt was made to improve
shock resolution by including more mesh points. The thermal boundary layer for
the cold wall case (no temperature slip) is evident in the forebody in fig-
ure 17. There are approximately five mesh points through the thermal boundary
layer in this case. The Mach number and Reynolds number range for this case
closely corresponds to the first comparison case in which good agreement with
heat-transfer data was obtained by using the temperature slip condition. So,
except for the effect of temperature slip, the thermal boundary layer should be
accurately predicted.

Velocity vectors over the Viking aeroshell are presented in figure 18 for
the adiabatic case. The recirculation region is clearly visible in the wake.
Here again, the effect of velocity slip on the recirculation region is subject
to future verification. Pressure coefficients and heat-transfer distributions
are presented in figures 19 and 20 for the cold wall case. The method used to
integrate pressure coefficients and skin friction to obtain drag coefficients
is presented in appendix F. The breakdown of the drag coefficient into the
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forebody and afterbody pressure drag coefficient and the forebody and afterbody
skin-friction drag coefficient is presented in table VI for the adiabatic case.

Similar presentations are made for flow fields obtained, an adiabatic wall
being assumed, around a Jupiter probe. Density contours are presented in fig-
ure 21. Here again, the calculated shock thickness 1s probably on the order of
10 times the true value. Velocity vectors are presented in figure 22. A mag-
nification of this vector field with more velocity vectors included shows a
distinet velocity gradient near the body from which a boundary-layer growth can
be observed (fig. 22). Such a clear, boundary-layer type phenomena will cer-
tainly become less obvious with the inclusion of velocity slip. A pressure
coefficient distribution is presented in figure 23 and a drag coefficient
breakdown is presented in table VI.

When calculating the flow field over the Jupiter probe with stretching
parameter B = 0.5, it was found that there were not enough points to define
the wake flow far from the body. The last computational points in the wake
before the outflow boundary were still in a region of subsonic flow. The tech-
nique of mapping the outflow boundary to infinity when these last computational
points were still in a subsonic region initiated large oscillations in the flow
variables. The problem was eliminated with B = 1.

CONCLUDING REMARKS

The coordinate transformation procedure and solution technique described
herein has been shown to be well suited for the calculation of the complete
flow field surrounding various two-dimensional and axisymmetric bodies. This
conclusion is supported by the good comparisons obtained between predicted val-
ues and experimental data for pressure coefficient distribution and heat-
transfer distribution on a cylinder and for density distributions and shock
standoff distance on spheres. The solutions for the flow over the Viking aero-
shell and a Jupiter probe were obtained by simply adjusting five transformation
constants without having to perform any adjustment on boundary conditions. The
versatility of the technique in being able to model many different axisymmetric
blunt body shapes and its ability to calculate both the forebody and wake flow
over these shapes represent a significant advance in aerothermodynamic
technology.

Improvements to the numerical approach can be made to greatly extend the
Mach number and Reynolds number range and to reduce the execution time on the
computer. The technique can be reprogrammed to run on the STAR 100 computer
with a potential execution time reduction of a factor on the order of 30. The
numerical approach can also be altered so that the stability 1limit on At is
increased by using an alternating direction implicit method or partial
implicitization.

An upper limit on Reynolds number on the order of 1000 is imposed because
of an inability to resolve a thin boundary layer with a reasonable number of
computational mesh points. A lower limit on Reynolds number on the order of
100 is imposed so that continuum theory is applicable. An upper limit on Mach
number approximately equal to 4.0 is imposed because of a tendency to calculate
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negative static enthalpies in the process of capturing the bow shock with a
reasonable number of mesh points for large Mach numbers. These limitations

are a consequence of the numerical method used and not of the coordinate system
itself.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

October 26, 1977
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APPENDIX A

METRIC COEFFICIENTS

The metric coefficients of an orthogonal curvilinear coordinate system are
of the nature of scale factors which give the ratios of differential distances
to the differentials of the coordinate parameters (ref. 43). The equations
which are used to define the metric coefficients can be derived in the follow-

ing manner.

Consider the orthogonal transformation as defined in equations (1) for
axisymmetric bodies. Let a 6 curve be defined in space as a line of con-
stant r and ¢ in equations (1). If ¥ is the position vector of a
point in space, then a tangent vector to the 6 curve is given by

> >
or or 95¢

§=—=—— (A1)
30  dsg 990

where sg 1is arc length along the 0 curve. The vectgr 3?/359 is a unit
vector tangent to the © curve which is redefined as ug (fig. 24). Equa-
tion (A1) can now be rewritten as

6 = heze (A2)
dsg
where hg = Eg— is the length of @. Therefore, the relation for hg can be
written
dsg o7 90X » 9y » 0Z »
hg =—=|—|=|—1i+—J+ — k (A3)
de 36 a6 a6 0

The final expression for hg, along with h, and h¢, which can be obtained in
a similar manner, becomes

™
2 2 2 -
ax dy 9z
hp2 ={— | +{—] +{—] ={(-B cosh r + C sinh r) cos ©
ar ar ar
L
N T
- E; nApe?’ cos nb + | (B sinh r ~ C cosh r) sin © (a4)
nz=2 i L
N -2
+ E nAel’ sin nb
n=2 i J

(Equations continued on next page)

34



APPENDIX A

\
2 2 2 r
X oy 9z
h92 =|l—]) +|l—) +|l—} =|(B sinh r - C cosh r) sin 6
06 96 30
N T
+ > nApel” sinnd | + | (B cosh r - C sinh r) cos 6
n=2 B L
N =2
+ nApnel!” cos nd ? (Al)
n=2 |
2 2 2
ax 3y 9z
h¢2 =|—] +|—] +|—] =|(Bcoshr - C sinh r) sin 0
2 1) 3
N 2
+ > Apel? sin nb
n=2

/

Note that hg? ;+hp2 in equations (AW). The metric coefficients are all
positive as long as, ug is in the same direction as 6 and Up 1is in the
same direction as R in a right-hand coordinate system. Therefore, the metric
coefficients may be written as

hg = hp = h (45)

hy, |y(e,r,0)| = Y (A6)
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APPENDIX B

MODIFIED BRAILOVSKAYA SCHEME IN TRANSFORMED COORDINATE SYSTEM

The differencing procedure presented in reference (15) was applied to the
governing equations in the transformed coordinate system. The subscripts 9
and r in this section refer to derivatives with respect to © and r,
respectively. Derivatives with respect to r are approximated by difference
formulas in N as defined in equations (18). The difference approximations to
the various derivatives and details of the iteration procedure follow:

ny . {yn - yn

ug(uh) = (ui+1,j ui-1,j)/b1
ny - [yn -

vp(vl) = (Vi+1,j v 1,3\
ny - (1n _ 1n

Ie(I ) = (Il+1,J Il—1,J)/D1

n n n - - n
ug (I%,ul,vh) = (“1+1,J ui_1,j2/51

ny - (yn - un

up(ult) = (ui,j+1 uf 5o 1)//D2
ny - [yn -

vp(vl) = (Vi,j+1 1)/D2
ny - (1n - In

I.(1I0) = (Ii,j+1 I 13- 1)//D2

Up (17, ul,vR)

n - yn
(U i, j+1 ui,j—1%/b2
n — onn+1 n
(ui+1,3 2u i3 + ul 1’3)/b3

n _ ogh+1 n
(V1+1,J 2v i3 + vl 1,3}/53

n on+l
e

vee(vn,52T3>
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teo(T 1)) = (g - 2]+ Ly, ) o

see (sT02]) = (4, ur = 25+ )/ e
Vrr(Vn’;§T3) = (v2,3+1 - 25??} + vg’j_1)/$4 + vp/B
IPP(IH’T?T}) i (I2,3+1 - 20gy) I?,j-1)/g” + Ir/B

=
D
=3
~~
o
=
N
"
TN
o]

- ul - un n
Y1t 41 T i, 541 T Y, g1 Y ui-1,j-1)/D5

n n - yn - yh n
vor(v?h) (vi+1,j+1 Vier, 541 7 Viet, 51 Y vi—1,j-1»/D5

(o) gl o™, u™) = [ (oD, 4 - (p“)3-1,j]/D1
(puv) (o ul, 1) = [(puv)2+1’j . (puv)?_1’jj/b1
(b + pu2)g(p%,un, v, 1) = [(p + o221 1= (B + u2)T ]/51

i+1,3 i-1,J

(puI)g(ph,ult,17) = [(puI)fil+1 5 = GouD{_, j]/b1

(pWpo™, v =[] 4 - (DV)?,j-1}/b2
(puv)p(pf,ult,vh) = [(puv)?,j+1 - (puv)?’j_1]/D2
(p + pvz)r(pn,un,vn,ln) = [(p + pv2)?’j+1 - (p + pvz)g’j_1]/D2
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n yn ny - n - n
(pvI)p(pB,vR,IN) = [(DVI)i,j+1 (pVI)i,j-1J/D2
D1 =2 A6 A8 = m/(NI - 1)

Dy = B2 An/n An = 1/NJ
An
= AB2 n=—=+(j-1) M
D3 . hj
Dy = B2 An2/n2 O = (1 - 1) A8
D5 = B4 A8 An/n r = B loge (M)

ke,
[a]
n

-1
n ] ob | | - o.s(un 2 4 n .2>
1,J Y 11J 1,J 1,J 1,J

2 2
n m . _o0.5(ud 24 ) (y - M 2
Ti,j [ i,3 5<u1,3 IR Y ©

1.5
n ™ | c 1)/{co + TR |
M1, < i,J> (Co + 1) ( 2 l,J)

The term Cp 1is a constant which depends on the gas and the free-stream
temperature. These constants can be found in reference 44. For example,

Co = 100/T_ ¥ (For air)
Cy = 233/T_* (For carbon dioxide)
Co = 98/T_* (For helium)

The metric coefficients and their derivatives are all analytiec functions of 8
and r which can be obtained from equations (A4). The right-hand side of each
conservation equation is now written as

1 1 1 1
(pu) (pv), + pul— ¥Yg + — h + pvi— Y., + —h
pue + r+P <; ® * ?) <; Ty i>

1
Ay, 5(P%uR, V) = - =

i,
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- 1
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= 1 1 1 1
Dj, j(pR,un,v0,In, In+1) = | - g[(ml)e + (ovI)p + puI<; Yo + - h% + pv:[(; Y,

1 h> 1 2 21 .
+ = Dp)l + ——— | U~ ~ ugvp - = = Youv, + vvgg
b hZNRe y CO 3 3Y

2 1 2

- — uv + vgve + vwal— ¥Yg - — h + Unv

21 11 2I_1 1 1
+uVe-§;Yr+§;hP —VL;hQ:I-qu-Hhee

1h2 1Y 21Y 11h
- |= + Vup — + vu - vupl— — - ==
h@ r'Ye Or 63Yr~ 3hr

21, A I B DRI
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(Equation continued on next page)
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The modified Brailovskaya scheme can now be written as

\
sn+1 _ 5n . s n ,;h yn
PIvy =Pi,5 * At A1y (p™,utt,vil)
GET} = u?’j + At By, j (pn,un,vn,In,ﬁg+}>
H
Step 1

vo+l = v 4 At Cy pf,un yo 1n yn+l F

i, 7 i, »J 1,3
T?"‘} = II::L] j + At Di,j (pn,un,vn,ln,fri“"})

’ ’ H

n+l - fn . ~n+1 gn+1 gn+1 W
pl’j pi’j-eAt e (p yu ,V )

n+l - yn At B: (on+1 gn+1 gn+1 Tn+l yn+1)
ul’J ui 3 + i, p yUu 'V ’ s U

H
Step 2

n+l =~ yn . sn+1 qn+1 yn+1 fn+1 yn+1
vl’J = Vi,g + At Cy 5 (pn+1, i+l yn+1 TN+l yN+1)
Ig+3 = I2 5 + At D | j (5n+1,ﬁn+1,;n+1,jn+1’In+1{J

H H
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APPENDIX C

BOUNDARY CONDITIONS AND DIFFERENCE FORMS AT THE BOUNDARIES
Inflow and Outflow Boundary

As discussed in a previous section, the computational boundary at n = 0
corresponds to a circle of infinite radius surrounding the body. This one
boundary has mass entering from the far field and leaving to the far field;
hence, it is both an inflow and outflow boundary. Values for properties on the
cell walls at this boundary are

Jdu
u(p) = ~sin 6 —~(6) = -cos 9
@ 36

axn
v_(8) = -cos © ——(0) = sin 0
«© 30

1
= 1 - —
P Py Ysz
1
I = + 0.5
(v - OM2

Values of derivatives with respect to n at mesh points whose cells lie
along this boundary (j = 1) are calculated as follows:

1
i, 14—
a(pv) ov |t s 1 1
= — = —{ T (pv); o + (pv); - [~cos ©
i,1 i,1-—
2

1
(pv) + (pv); + 2 cos 0
E;z;j i,2 i,1 ]

In like manner,

3(puv)

1
= ——-—|(puv)- + (puv); - 2 cos 9 sin 6
an 2 An i,2 i,1 ]

i1
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3(p + pv2) 1
EE— = ————l(p + Dv2)i >+ (p + pvz)i 1 = 2(p, + cos? 6)]
an . 2 An ’ ’
i,1
3&8251 —;L—ﬁ (pvI) (pvI) 2 I
= pvl)y + vI); + cos
an i1 2 An i,2 p i, m]
b

Examples of second derivative formulas are

1

32y 1 av|B My 1 a2 - v 1
- = — = -\ - = ——(vi 2 - vi 1)
a2 An 9n 1 Dn An An2
j-’1 i,1—_
2
. R
324 1 sul® 119 i4—, 14—
= — — 2. u| ? - (-cos 6)
an 96 An 96 1 An| A® 1 1
i1 i,1-—- i——) 14—
i . + U, 1 . 1+ U, 1
: 1+1,71+- i,1+- 1,1+ 1-1,1+-
1
= - + cos ©
An| AB 2 2
101
= — u 1 -u 1\ + cos ©
Anf2 BB\ 141,14—  i-1,14—
i 2 2
1] 1 [uisr,2 + uig1,1 uj-1,2 + ui—1,1> .
= - c
Anj 2 A8 2 2 + cos
1 1 N
= T aplUiH1,2 * Uiel,1 T Uie1,2 - uj_1,1) + cos 6
where 0 = (i - 1)A6.
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APPENDIX C
Wall Boundary Conditions

The computational boundary at M = 1 describes the entire body in the
(x,y) plane. As a consequence of the no-slip condition up = 0 on the cell
walls that are bounded by 7N = 1. Since there can be no mass flux through the
body, vy = 0 on the cell walls that are bounded by n = 1. Values for pres-
sure on the wall are extrapolated from interior points. Thus,

Pp = 1.5p;i,NJ ~ 0.5Pi,NJ-1

When the enthalpy or temperature of the wall is specified, the density at the
wall can be calculated directly from the equation of state. For the case of an
adiabatic wall, the enthalpy at the side of the cell is calculated from interior
oI
points at the previous time step using a backward difference formula for 5— ,
n
b

which must equal zero for the adiabatic case. Thus, for an adiabatic wall,

1

n- n~1
9INg - INg-1

8

(c1)

I, =

Mass, momentum, and enthalpy flux across the cell walls opposite to the
1
wall boundary, corresponding to NJ - E’ are calculated differently than those

for other interior cell interfaces. It was observed in reference 15 that very
low, and, in some cases, negative densities would occur in cells near the wall
above the separation point on the base for small mesh sizes and low Reynolds
numbers. Allen and Cheng traced this behavior to the way mass, momentum, and

1
energy flux were calculated along the NJ - E line of cell edges. They noted

that vp 2 0 and that as a consequence of the continuity equation and the no-

v
slip condition, — = 0 in the steady state. This condition implies that

an
b
the variation of v as a function of N near the wall should be quadratic.

1
2

as the average of values at NJ and NJ - 1, a linear variation of velocity
in that area is implied. It would be more accurate to determine the value of

However, by defining the velocity and fluxes through the cell wall at NJ -

velocities and fluxes at NJ - E on the basis of a quadratic variation near

the wall by putting a second-degree polynomial through the three points at the
two cell centers and at the wall. Consequently,
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-(pV)p + (PVINg-1 + 3(oVvINg  (PVINJ-1 + 3(PVINg

(pv) = s - =
NJ_l 3 3
2
(puv)yng-1 + 3(puving
(puv) 1 = -
NJ—— 3
2
(pv2)ng-1 + 3(pv@lyg
(pv3) 1= - —
NJ-—— 3
2
(pvI)ng-1 + 3(pvI)yg
(pvl) 1= —- ———
NJ-— 3
2
VNJ-1 + 3VNJ
v 1 = —
NJ-— 3
2

Values for the derivatives of u, v, and I with respect to n at the
wall are obtained from a backward difference formula using interior points.
Therefore,

du 8up - Juyg + uNg-1

— = (c2)
an b 3 An

3v 8vp - 9VNJ + YNJ-1

— = (c3)
an b 3 An

oI 8Ip - 9Ing - INJ-1

= = —— (c4)
an b 3 An

Some examples of the difference approximations to derivatives with respect
to n in cells positioned next to the wall (at j = NJ) are presented:
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S0ao) I Ll S PO LT M
an T An { On 3
i,NJ i,NJ-5

(pv)i’NJ_1 + 3(pV)i,NJ
3 An

3(p + pv2) 1 i,NJ+-
Sl —(p + ov2) 2
an An

:
i,NJ i,NJ-—
2

Pi NJ-1 + PNg  (ov®)i Ngo1 + 3(ovA)y Ny

Pi,b - > + 3

5l-

i,NJ+—

32y 1 dv
an2 An an 1
i,NJ i,NJ——
2

1 {-9Vi,NJ + Vi,NJ-1 Vi,NJ = Vi,NJ-1 -12vi N + 4Vi,NJ-1

An 3 Bn An 3 An2
1 1 1
i,NJ+— 14—, NJ-—
92y 1 9du 2 1 1
= — — =—|0~—u
on a6 An 36 1 An AB 1 1
i,Nd i,NJ-- i-—yNJ-—
2 2 2

(Equation continued on next page)
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1 Ui+1,NJ-1 + Vi1, NJ Yi-1,NJ-1 - ui—1,NJ>
T2 An A8 2 2

1
(Uj41,NJ=1 + Uist,NJ = Ui-1,NJ-1 = Ui-=1,NJ)

T4 An A6
1
5 NJ+§
9°I 1 3T 1 <%Ii,b = 913 N * Ii,No-1  Ti,Ng - Ii,NJ-1>
an2 An 3n 1 " M 3 An An
i,NJ NJ-—
2

1
= A 2<8Ii,b - 1213 Ng + MIi’NJ_1>
n

Because of the redefinition of flux terms through the cell walls at
1 .
NJ - 5, the derivatives with respect to n at cell centers along the line
NJ - 1 are defined as follows:
1
i,NJ-—
2
a(pv) 1

an An

3
i,NJ-1 i,NJ-5

(Equation continued on next page)
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APPENDIX C

An

3(p + Pv23)
an

i,NJ-1

1
An

Pi NJ-1 + Pi,Ng-2  (PVv3)i Ng-1 + (PV

1
—(p + pv2)
An P

Pi,

1 [(Ov)i,NJ-1 +3(v)g,Ng (PV)i,NJ-1 + (QV)i,NJ—Z]

3 2

1
3—35[6(QV)1,NJ - (pv)i,NJ-1 - 3(DV)1,NJ—2]

:
i,NJ-—

. 3
i,NJ-—
2

NJ + Pi,NJ-1 1
= +

(ov2): NJ- 3(pv2) ;
> 5{ V)i, NJ-1 *+ i,NJ

)i, NJg-2

1
e

1

—(p
2

2 2

1
i,NJ = Pi,NJ=2) + 3[6(0V2)1,NJ

- (ov2)i,NJ-1 - 3(DV2)i,NJ-2]

Other N derivatives are defined similarly at J = NJ -~ 1.
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APPENDIX D

OBSERVATIONS OF SEPARATION IN WAKE

The presence of an inflection point in the pressure distribution curves
can usually be used to determine the location of the boundary-layer separation

32p  [Pis1 - 2Pi + Pi-f
from a cylinder surface (ref. 45). Values for = ( >
A8
b

962

were calculated in the vicinity of the separation point of spheres, cylinders,
and the planetary probe shapes presented herein with cold wall and adiabatic
wall specifications. In all cases it was found that separation occurred within
+A6 of the location where 92p/382 changed sign. It should be noted that
this derivative is not equivalent to 32p/832 where s 1is the arc length.
Since ds m h dO, it can be shown that
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APPENDIX E

EFFECT OF € ON ENTHALPY DERIVATIVE

Because the convective heat transfer is so sensitive to the enthalpy
derivative at the wall, it was decided to examine the effect of € on this
derivative. Three flow field solutions were obtained for the first experi-
mental comparison case (M, = 1.90, Npe . = 105, Npp = 0.7, y = 1.4,

Tp* = 90 K). The first solution was obtained with € = 0.04, B =1, and a
mesh size of 51 x 50; the second solution, with € = 0.001, B8 = 1, and a mesh
size of 51 x 50; and the third solution, with € = 0.001, B = 0.5, and a mesh
size of 51 x 100. Results of this investigation are presented in table V. It
can be seen that there is only an average of 2-percent difference between the

€ = 0.04 solution and the € = 0.001 solution for the mesh size of 51 x 50.
Most of this error is due to differences in the derivatives on the rear stagna-
tion line. However, the magnitude of these differences is small in the base
and will not appreciably change heat-transfer levels there. The finer mesh
size causes an average of lUd-percent increase in the enthalpy derivatives.

These derivatives are thus seen to be more sensitive to mesh size near the wall
than to the smoothing parameter.
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APPENDIX F

DRAG COEFFICIENTS

The drag coefficient around an axisymmetric body in the transformed coor-
dinate system can be expressed as

1 m
cp = ————( | [po*(®) - 2] -sintwbw)J} anx
%pw*vm*2si 0

m
+ S‘ Tb*(e){—costlbb(e)]} dA* (F1)
0

where the angle Y 1is defined in figure 6 and sin V and cos y are defined
in equations (30). Also,

dA* = 2TRN*YRN*h d® = 2mRy*2Yh d6 (F2)
* %2y 2
S*¥ o TRN*“Ypax (F3)
Ju* u* au¥*
T* = ¥ —— = -_— (Fll)

dn¥* 5 Ry*hB on

hB

Note that dn¥* = -Ry¥ — dn.
n

Combining equations (F1) to (F4) yields

1 m .
Cp = ;5——<}; -M[p(e) - p«J sin [w(G)JhY de
max

L 19
N jﬁ h_ cos[H(8)Tn¥ d
0 NRe,co B h 3]’]

By substituting the values of h and Y from equations (A4) to (A6) and

the value of sin ¢ and cos ¥ from equations (30) and noting that r = 0 for
the body, one obtains
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Y2
max

N
+ 22 Ap sin n6> do
n=

APPENDIX F

1 m N
—_ j _u[p(a) - pw:|<B cos O + Z nAy, cos n9> (B sin ©
0

n=2

N N
-C sin 6 + E nA, sin n9> B sin 0 + E A, sin n® 4@
n=2 n=2

n(8,0)
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TABLE I.- PARAMETERS DEFINING PROBE SHAPES

Parameter Viking Jupiter
aeroshell probe
Ry 1 1
Rp 2.5 3.227272727
L 1.5454545 3.227272727
L4 .588940466 1.378281288
Ymax 1.590909091 2.163636364
B 1.514647678 2.078979297
c .716078733 1.548980197
A -.059786238 ~.0U42862760
A3 -.056648540 -.064656167
Ay .042817883 .062550354
.- [ —

TABLE II.- VISCOUS STABILITY LIMIT

ON VIKING AEROSHELL

CALCULATIONS

[Atinviscid = 0.01100; n = 1]

Index i

23
24
25
26
29
51

Atviscid

5.575 x 10=3

5.530
.604
.oy
L1462
.506
1.205
35.703

Atinviseid

Atviscid

1.973
1.989
18.212
22.267
23.809
21.739
9.129
.308




09

TABLE III.- VARIATION OF ENTHALPY DERIVATIVE WITH INCREASING ITERATIONS

[(51 x 100), ¢ = 0.001]

di/am,

9i/9n, 9i/3n, 9i/am, 9i/9n, 9i/9m,

Index i|0, deg|6000 iterations,|5000 iterations,| 4000 iterations,} 3000 iterations,|2000 iterations,{1000 iterations,

em 8.45 x 10°5 |e = 1.61 x 10-% |e = 3.24 x 10-% |e = 6.19 x 10~% e = 1.40 x 103 |e = 4.42 x 10-3
1 0 -0.653 -0.660 -0.660 -0.707 -0.900 -1.540
6 18 -.580 -.587 -.587 -.580 -.707 ~1.307
1 36 -.773 -.773 -.780 -.787 -.T47 -.813
16 54 -1.160 -1.160 -1.167 -1.173 -1.133 -.760
21 72 -2.027 -2.033 -2.033 ~-1.987 -1.953 -1.467
26 90 -3.533 -3.533 -3.480 -3.493 -3.407 -2.780
31 108 -5.640 -5.640 -5.647 -5.600 -5.513 -4.853
36 126 -8.293 -8.293 -8.300 -8.307 ~-8.207 =7.547
41 144 -10.993 -10.993 -10.993 -10.987 -11.000 -10.367
46 162 -12.987 -12.980 -13.033 -13.080 -13.073 -12.527
51 180 -13.687 -13.747 -13.733 -13.780 -13.827 -13.273




TABLE IV.- EFFECTS OF R ON DISTANCE d OF MESH POINT

FROM ORIGIN OF SPHERE OF RADIUS EQUAL TO ONE

i

-
[

Jl%uhqw

adm~o

Mmﬁﬁﬂo‘ -
~ o Wl -

1,960784314
1,886792453
{,818181818
1,754385%96%
1,69491%254
1,63934d4262
1,587301{56&7
1,5384561538°
1,492537313
1449275362
1,40B49070u4
1,369863014
1,333334333
1,298701299 ~
{1.,265822785
1,23458679¢
1,204B19277
1,176370588
1,149425%287
1,123595506
1,098901099
1,075268817
1,052631579
1,030927835
1,010101010

1,656999464

1,609878490

1,565770054
1,5243882162
$,485060101
1,44B8780606
1.414147102
[.381385785
1,35034238¢0
1320875445
1,292874109
1.266216169
{.240806479

1,816555583 °

1,19338254¢
1,171213948
1,149983048
1.129628929
1,110096058

1,0913335¢1

1,073294628
1,055936467
1,039219521
1,023107337
1,007566232

1,40028008%

14373605639

14348399725
1324532357
1,301889110
{,260368799
] 259881577
1.240347345
1,2216944343
{+20385853]
1,1B67B1658
1.170411472
1,154700%38 -
1.,139605786%
1,125087901
teliftilinnig
1,097642600
1,084652289
§1,072112535
1,059997880
1,048284537
14036951695
1,085978352
1,015348]565
1,005037815

1,183334308

1,172009232

i,1612086151
i,150883294
1,141003554
1,131533826
i,122445455
1,115708825
1,105302874
1,0972048/72
1,089395088
1.,08I855548%

1,074569932
1,007523192 ~

1,060701608
§,054092553
1,047684399
1,041566413
1,035428672
1,029561985
1,0238578¢21
1,018308251
1,012905895
1,007643868
1,008515743

B = 1.00 B = 0.75 B = 0.50 8 = 0.25
d d d d
“100,000000000 31,622776602 10,000000000 3,1682776060
'33,353353353 15,872638168  '5,773%02692  2,408811414
20,U00000000 9,45741609¢ 4,47213595%7° 2,114742527
14,285714280 7,35u812389¢ 3,779644730° 1,944§30842
Tl 113188111 6,085806195 3,333333333°  1,82574{858
9.,090909091 5,235467719  3,015113488 1,736406203% -
T 7,692307692 4,618941755 €,773500981 ~ ,685383133
T be.bbbbbbbb] §,14888651% 2,5819888B97 ° 1,6068%6838
~ 5,882352941 3777141971 2,4253%6250 - 1,557355531
T 5,2631597898  3,474839897 2,294157339 1,51406475%6
4,7619047602 3,223558299 €,182178902° 1,477219987
4,347826087 3,010954016 2,08514414] 1,444002819
4,0000u0000 R2,8284271e5 2,000000000 1,418213962
T 3,703703704 2,669790460 14924500897 ° 1,387263817°
T 3,4u82758Bee  2,530471799 1,896953382 ° 1,362700708
3,225806452 2,407014628  1,796053020 [,330169027
'3.030303030 2,2967543387 1,740/7056¢ 1,319384917
2,8571u42857 2,197601621 1,690308509 1,300118652
2.,702702708 2,107893705 1,643989873 1,282181645
2,564102564 2,026289737 1,601281538 1,265417535
B 2,435024350  1,951695710 ° {,561737619 ° [,249895010
2,325581395 1,B883209595 [,524985703 1,2388035115
€.2222228222 1.,82008097% [,4907]1985 i,220947167
€,127659574  (,761678347 {,458649915 1,2077645799 ~
2.,040818327 §,70746944g 1,428571429 {,195228609
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TABLE V.- EFFECT OF B AND MESH SIZE ON ENTHALPY DERIVATIVE

®

®

®

€ = 0.001

62

e o
e = 0.04 |e = 0.001 Percent differences
(51 x 50)| (51 x 50)| (51 x 100) - P
x| nl | oal | ou |0-Q 10-0 |0-@
-— —_ —_— _— 100
LY I S e © ®
1 -0.598 -0.688 -0.653 -8.42 5.36 -13.08
6 -.5uy -.566 -.580 ~-6.21 -2.4 -3.89
11 -. 774 -.783 -.773 .13 1.29 -1.15
16 -1.139 -1.134 -1.160 -1.81 -2.24 Lay
21 -1.954 -1.936 -2.027 -3.60 -4 . 4q .93
26 -3.324 -3.283 -3.533 -5.92 -7.08 1.25
31 -5.301 -5.259 -5.640 -6.01 -6.76 .80
36 -7.809 -7.799 -8.293 -5.84 -5.96 .13
41 -10.434 -10.444 -10.993 -5.09 -4.99 -.10
46 -12.453 -12.499 -12.987 =41 =-3.76 -.37
51 -13.213 -13.216 -13.687 -3.46 =3.4Y4 -.02
Average, percent . . . . . bh.60 4,34 2.015
. e - — . . oo
TABLE VI.- DRAG COEFFICIENTS
- " | Pressure | Skin-friction o I
drag drag Total pressure| Total skin- Cp
coefficient coefficient drag frietion drag|(No slip)
i SRR ¥ ~ Coe e — coefficient coefficient
Forward] Aft Forward Aft
Jupiter probe 1.051 {0.197510.1685 |0.06267 1.243 ‘ O.2é§57 i.477
Viking adiabatic wall] 1.296 }0.2610[/0.1121 j0.03650 1.557 .“6.1486 1l%b§_J
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— — - —True body shape

Figure 2.- Analytic approximation to Viking aeroshell with
associated coordinate lines.
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— Analytic approximation

——————— Planetary probe vehicle
(Candidate configuration for
Jupiter probe, ref. 20)

Figure 3.- Analytic approximation to Jupiter probe.

Figure 4.- Basic geometric parameters of planetary probe.
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Figure 5.- Convergence test results for various mesh sizes.
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Direction of increasing O,
positive u
(counterclockwise)
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increasing r,
positive v

(toward body)

Line of constant r

Figure 6.- Orientation of velocity vectors in transformed coordinate system.
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Cell boundaries
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Figure T7.- Details

of the (6,n) computational plane.



1.8 L@m = 1.90

< Npe oo = 105
Np_ = .7
1.4 y = 1.4
T* = 174 K
1.0 p =1
51 x 50
e = 0.001

o Experiment (ref. 37)

Cp - Calculation
2
-2+ 0o
-.6F
-1.0 r 1 1 1 1 o1 [ 1 |
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m™ -6 180
w

Figure 8.- Pressure coefficient distribution on cylinder with adiabatic wall.
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‘ Npe o = 105
NPr =1
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1.0 p =1
51 X 50
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CP i Calculation
21
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Figure 9.- Pressure coefficient distribution on cylinder with cold wall.
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NRe,oo = 105
NPr = .1

y = 1.4

T* = 174 K
g = 1

51 x 50

e = 0.001

o Experiment (ref. 37)
Calculation Tb = 90 K
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Figure 10.- Convective heat-transfer coefficient distribution on cylinder.



2L

500

M, = 1.90

400 NRe, = 109

o Experiment (ref. 37)
300} N Calculation Np . = 0.7
at ‘Wz —— - —— Calculation Ny, . = 0.77

m (with temperature slip)

200} .

100

1 | i | | | | © 9
0 20 40 60 80 100 120 140 160 180
m-0
- 180

Figure 11.- Convective heat-transfer distribution on cylinder with constant wall temperature.
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Figure 12.- Convective heat-transfer distribution on cylinder with
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Figure 13.- Density distribution across shock layer of sphere at x = -1.
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Figure 16.-

Density contours over Viking aeroshell, adiabatic wall.
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Figure 17.- Density contours over Viking aeroshell T = O'6Tstag'



Figure 18.- Velocity
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vectors over Viking aeroshell.

79



08

2.0 —

1.6

1.2}

-.4 | J | ! | |
0 20 40 60 80 100 120 140 160 180

7 -6 180
i

Figure 19.- Pressure coefficient distribution over Viking aercshell (cold wall).
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Figure 20.- Convective heat-transfer distribution over Viking aercshell

with Ty = 0.6T .
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Figure 21.- Density contours over candidate configuration for Jupiter probe.
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(a) Large scale view of velocity field.

Figure 22.- Velocity vectors over candidate configuration for Jupiter probe.
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Figure 22.- Concluded.
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Figure 23.- Pressure coefficient distribution over candidate configuration for Jupiter probe.



98

6 _ .
6 = h9 Uy
\”lt A R = hr u,
¥ Sg Arc length increases in
?,\»‘f S counterclockwise direction

s.. Arc length increases
toward body

u et
Al T L. ad -
3
TITy

Figure 24.- Schematic of vectors which determine metric coefficients.

(111 (AR



. Report”Nej 7 2. Governmem Accession No. 3. Recipient’s Catalog No.

NASA TP-1075

4. Title and Subtitle 5. Report Date
FOREBODY AND AFTERBODY SOLUTIONS OF THE NAVIER-STOKES February 1978
EQUATIONS FOR SUPERSONIC FLOW OVER BLUNT BODIES IN A 6. Performing Organization Code
GENERALIZED ORTHOGONAL COORDINATE SYSTEM

7. Author{s) 7 8. Performing Organization Report No.
Peter A. Gnoffo L-11770 ]

. . . ..~ . __ _110. work Unit No. i

9. Performing Organization Name and Address 506-26-20-01
NASA Langley Research Center . I
Hampton, VA 23665 11. Contract or Grant No.

] 13. Type of Report and Period Cevered

. Sponsoring Agency Name and Address

Technical Paper
National Aeronautics and Space Administration I
Washington, DC 20546 14. Sponsoring Agency Code

for the degree of Master of Science, George Washingfon University, April 1077

16.

. Supplementﬁg Notes

terial presented herein is revision of a thesis entitled "Solutions to the
Navier-Stokes Equations for Supersonic Flow Over Blunt Bodies in a Generalized
Orthogonal Coordinate System" submitted in partial fulfillment of the requirements

Abstract

A coordinate transformation developed in NASA TM X-3468, which can approxi-
mate many different two-dimensional and axisymmetric body shapes with an analytic
function, is used as a basis for solving the Navier-Stokes equations for the pur-
pose of predicting 00 angle-of-attack supersonic flow fields. The transformation
defines a curvilinear, orthogonal coordinate system in which coordinate lines are
perpendicular to the body and the body is defined by one coordinate line. This
system is mapped into a rectangular computational domain in which the governing
flow-field equations are solved numerically. Advantages of this technique are that
the specification of boundary conditions are simplified and, most importantly, the
entire flow field can be obtained, including flow in the wake. Good agreement has
been obtained with experimental data for pressure distributions, density distri-
butions, and heat transfer over spheres and cylinders in supersonic flow. Approx-
imations to the Viking aeroshell and to a candidate Jupiter probe are presented
and flow fields over these shapes are calculated.

17. Key Words (Suggested by Authoris)) 7 18. Distribution Stateﬁent .

Navier-Stokes equations Unclassified - Unlimited

Coordinate transformation

Blunt body

Wake flow

Supersonic flow SubJect Category 34
19. Security Classif. (of this report) 20. Security Classif. {of this ;V)eige) 21. No. of F;ages 22 Pnce i

Unclassified Unclassified 88 | $6.00 ]

* For sale by the National Technical information Service, Springfield, Virginia 22161 NASA-Langley, 1978




(- SFURC A EARAARINNTETIR

National Aeronautics and
Space Administration

Washington, D.C. -
20546

Official Business v

Penalty for Private Use, $300

THIHD—CLA§S BULK RATE

8 1 1u,D,
DEPT OF THE AIR FORCE
AF WEAPONS LABCEATORY

Postage and Fees Paid

~ National Aeronautics and
Space Administration
NASA-451 ’

012378 S00903DS T

ATTN: TECHNICAL LIBRARY (SUL) "y

KIBTLAND AFB NM 87117

) . N
If Undeliverable (Section-158

POSTMAST}?R: Postal Manual) Do Not Return

P




